Joint Effects of Context and User History for **Predicting Online Conversation Re-entries**

Xingshan Zeng¹, Jing Li², Lu Wang³, Kam-Fai Wong¹

¹The Chinese University of Hong Kong ²Tencent AI Lab ³Northeastern University

- Introduction
- Model
- Experimental Setups
- Results
- Conclusion

Outline

- Introduction
- Model
- Experimental Setups
- Results
- Conclusion

Outline

Motivation

• We are involved in a wide variety of online discussions every day.

 More and more active users on online platforms!

• Current notification strategy for online platforms: always notify if any new messages come in!

Result:

We need an automatic management tool!

Help us keep track of the discussions; 1) 2)

Predict whether we would like to re-engage in them. Only if yes -> notify!

• Re-entry Prediction:

Given:

A conversation that one user ever participated in.

Aim:

Forecast whether the user will return to the conversation.

What do we need for the prediction?

- Previous Work:
 - ✓ Users' arrival patterns (Backstrom et al., 2013) (Need several entry records for the users in ongoing conversations.)
 - Social relations, Group information (Budak and Agrawal, 2013) (Not always available!)
- Our Work:
 - (conversation's topics / patterns)

✓ User history – what kinds of conversations the users were actively involved in (user's preferences / habits) Ignored by previous work!

Conversation context – what has been discussed in the ongoing conversations

Conversation 1

- Model
- Experimental Setups
- Results
- Conclusion

Outline

Context Modeling Layer

Simple Concatenation

Last state representation of context structure modeling

Model

• Attention over Context

$$r^{o} = \sum_{i}^{|c|} \alpha_{i} \cdot H_{i}^{c}$$

Model

$\alpha_i = \operatorname{softmax}(H_i^C \cdot \sum_{j}^{|U|} H_j^U / |U|)$

Memory Networks

$\alpha_i = \operatorname{softmax}(H_{|C|}^C \cdot H_i^U)$

$$r^{o} = \sum_{j}^{|U|} \alpha_{j} \cdot f_{i}$$

We also adopt multi-hop mechanism, where the output of last hop (r^{O}) is input $(H_{|C|}^{C})$ of next hop!

Model

 $f_{turn}(H_j^U)$ another turn encoder with different parameters

user-aware attention

Model

- Introduction
- Model
- Experimental Setups
- Results
- Conclusion

Outline

Dataset	# of user	# of conv	# of re- entries	# of non re- entries	Avg. # of msgs in user history	Avg. entries per user per conv	Avg. turns per conv
Twitter	10,122	7,500	5,875	8,677	3.9	2.0	5.2
Reddit	13,134	29,477	12,780	39.988	8.4	1.3	3.7

Statistics of two datasets

- Twitter dataset: diverse topics; users tend to re-enter; lack of history.
- Reddit dataset: political topic; users tend to abandon; rich history.

Data

Experiment Setups

- For each dataset: 80%, 10%, 10% --> training, development, test
- Main experiment: first re-entry prediction – predict re-entries, given current turns until u's first entry in c as context and u's past chatting messages posted before u engaging in c.
- In-Depth Analysis: predicting second and third re-entries; results with varying user history; ablation study and case study; human comparison....

Comparisons

- Baselines:
- ✓ Random: randomly give a "yes" or "no" answer
- History: predict based on users' history re-entry rate before current conversation
- ✓ All-Yes: always answers "yes" in re-entry prediction (similar to current) policy for online platforms -- always notify!)
- S.O.T.A:
- CCCT (Backstrom et al., 2013) (links, arrival patterns, timing effects, etc)

Comparisons

• Variants of our proposed model: ✓ Without history:

Several turn encoders: Avg-Embed, CNN, BiLSTM

(Find a best encoder for rest experiments!)

 \checkmark With History (using best turn encoder):

Four mechanisms to combine history and context –

and bi-attention (BiA).

- simple concatenation (Con), attention (Att), memory networks (Mem),

- Introduction
- Model
- Experimental Setups
- Results
- Conclusion

Outline

Results

	Twi	tter	Reddit	
MODEIS	AUC	F1	AUC	F1
Random	51.0	45.0	49.4	32.6
History	50.1	46.4	50.7	35.2
All-Yes	50.0	54.9	50.0	38.5
CCCT	57.7	57.0	59.9	39.8
Avg-Embed	60.4	59.0	63.7	42.4
CNN	58.8	59.1	64.0	42.8
BilSTM	60.4	59.4	64.1	43.1
BiLSTM + Con	51.0	58.0	50.1	38.6
BiLSTM + Att	58.4	59.0	60.3	41.3
BiLSTM + Mem	61.3	59.9	65.5	43.7
BiLSTM + BiA	62.7	61.1	67.1	45.4

• Predicting first, second and third re-entries (F1 scores):

Results

• Results with varying user history (F1 scores of BiLSTM+BiA) :

Results

Chatting history is useful to signal user re-entries!

• Comparing with Humans: Setting: Randomly select 50 users (at least involved in 4 conversations);

Each has one re-entry and one non re-entry conversation (rest for history);

Predict which conversation is given user more likely to return!

Predictor	Twitter	Re
Human 1	26 (29)	30
Human 2	25 (28)	28
BiLSTM + BiA	35	3

Correctly predicting sample pairs

Results

- Introduction
- Model
- Experimental Setups
- Results
- Conclusion

Outline

Conclusion

- We study the joint effects of conversation context and user chatting history for re-entry prediction with a neural framework.
- Experimental results show that user chatting history indeed benefits the prediction, with well-designed mechanism (bi-attention) for alignment with conversation context.
- Further discussions also show that our model learns meaningful representations and exhibits consistent better performance in different situation, including comparing with humans.

Thank you!