Neural Conversation Recommendation with Online Interaction Modeling

Xingshan Zeng^{1,2}, Jing Li³, Lu Wang⁴, Kam-Fai Wong^{1,2}

¹The Chinese University of Hong Kong, Hong Kong, China

²MoE Key Laboratory of High Confidence Software Technologies, China

³Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China ⁴Khoury College of Computer Sciences, Northeastern University, Boston, United States

University

1. Introduction: Conversation Recommendation

☐ Motivation:

- Social media has revolutionized people's social interactions voice opinions and exchange ideas in online platforms!
- It exceeds any individual's capability of digesting the huge volume of online discussions formed every day!
- Urgent need for an automatic filtering tools!

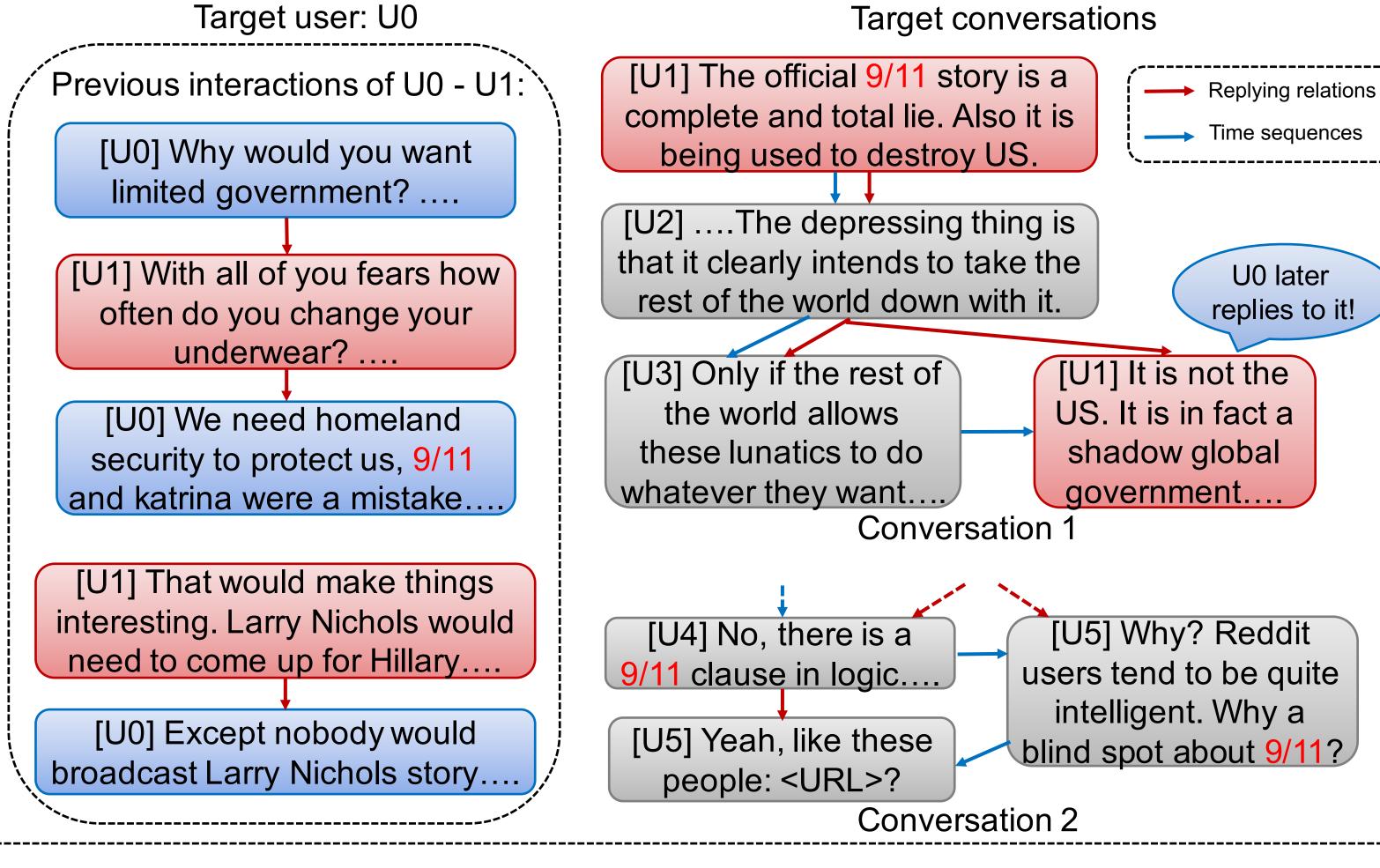
□ Definition:

- Given: a list of conversations that are available for one user.
- Aim: to forecast which conversations the user is more likely to participate in.

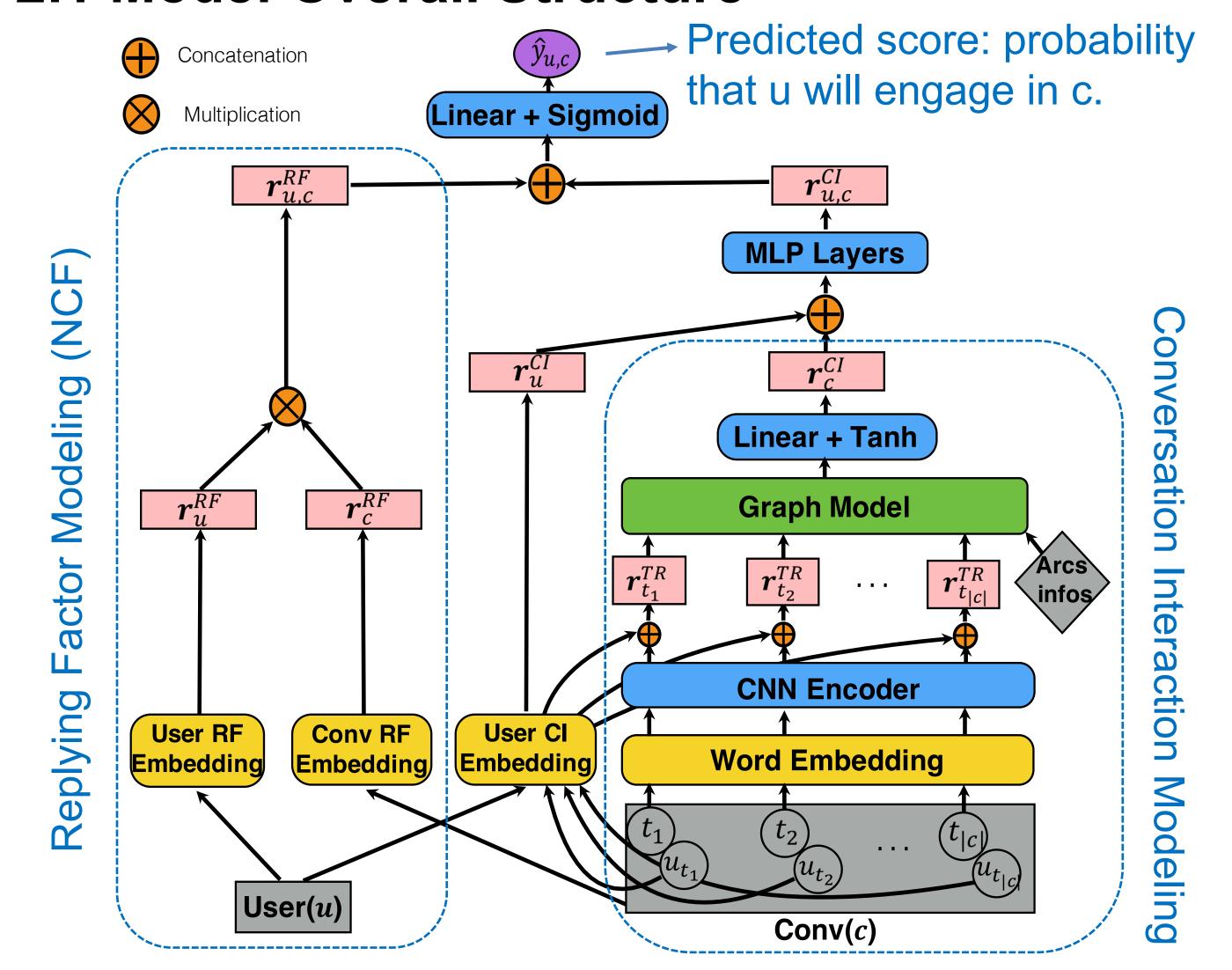
☐ Previous work:

- Post-level: not considering context information;
- Conversation-level: only capture topic information or word cooccurrence patterns, failure to leverage replying information.

☐ Our idea: online interactions indicated by replying structures could benefit users' future conversation behavior prediction!



2.1 Model Overall Structure



2.2 Model Details

□ Replying Factor Modeling:

Neural Collaborative Filtering (NCF) (He et al. 2017)

$$oldsymbol{r}_{u,c}^{RF} = oldsymbol{r}_u^{RF} \odot oldsymbol{r}_c^{RF}$$

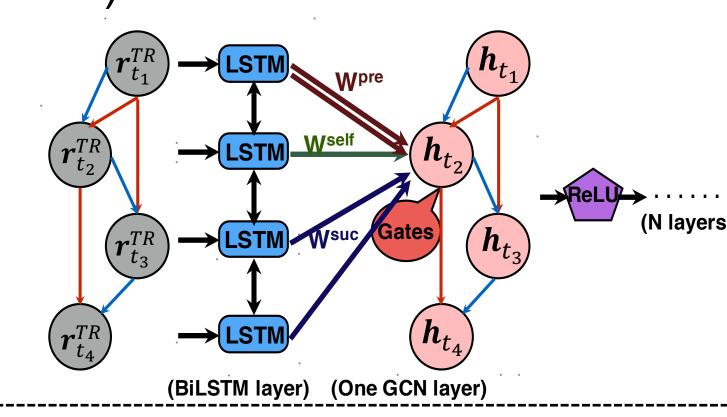
☐ Conversation Interaction Modeling:

- Turn-level Modeling
 - ✓ Pretrained Word Embedding + CNN Encoder
- Turn Interaction Modeling
 - ✓ Graph-State LSTM (GLSTM)

$$\boldsymbol{g}_t^{GLSTM} = \sigma(W^p \boldsymbol{x}_t^p + W^s \boldsymbol{x}_t^s + U^p \boldsymbol{h}_t^p + U^s \boldsymbol{h}_t^s + b)$$

✓ Graph Convolutional Networks (GCN)

$$egin{aligned} m{h}_t^{GCN} &= \sum_{i \in E^p(t)} \omega_{i,t}(W^{pre}m{h}_i^{LSTM} + b^{pre}) + \ &\sum_{j \in E^s(t)} \omega_{j,t}(W^{suc}m{h}_j^{LSTM} + b^{suc}) + \ &\omega_{t,t}(W^{self}m{h}_t^{LSTM} + b^{self}) \end{aligned}$$



3. Experiments and Results

■ Statistics of Datasets

Dataset	# of users	# of convs	# of turns	convs/ user	turns/ conv
Twitter	10,122	7,500	38,999	1.7	5.2
Reddit	13,134	29,477	109,774	5.9	3.7

■ Experiment Setup:

- ✓ First 75% as observation history for training, rest equally divided into test and development;
- Negative sampling to alleviate imbalance.

Loss Function

✓ weighted binary cross-entropy loss:

$$\mathcal{L} = -\sum_{(u,c)\in\mathcal{T}} \left[\lambda \cdot y_{u,c} \log(\hat{y}_{u,c}) + (1 - y_{u,c}) \log(1 - \hat{y}_{u,c}) \right]$$

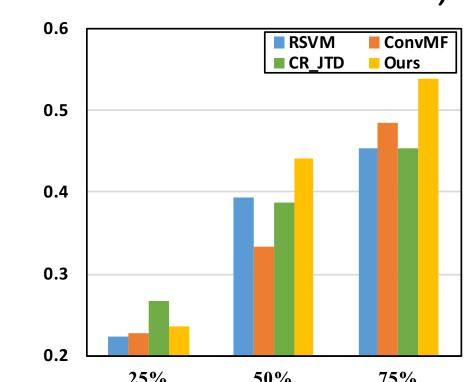
■ Different Interaction Modeling Comparison

Madala	Train time	MAP in dev. set		
Models	Train time	Twitter	Reddit	
BiLSTM	0.94	0.617	0.498	
GLSTM	1.25	0.617	0.528	
GCN (W/O BiLSTM)	1.03	0.619	0.530	
GCN (With BiLSTM)	1.00	0.620	0.533	

Comparison with Previous Work

Models	Twitter			Reddit		
	MAP	P@1	nDCG@5	MAP	P@1	nDCG@5
Popularity	0.023	0.005	0.010	0.082	0.033	0.063
RSVM	0.554	0.575	0.559	0.453	0.457	0.466
NCF	0.573	0.593	0.576	0.412	0.544	0.461
ConvMF	0.579	0.596	0.583	0.485	0.532	0.520
CR_JTD	0.591	0.591	0.600	0.453	0.559	0.485
Ours	0.625	0.632	0.626	0.538	0.670	0.590

Varying history (MAP for Twitter/Reddit):



Better with longer history!

■ ConvMF ■ CR_JTD ■ Ours 0.8 Sparsity severely harms!

Varying user sparsity:

✓ First Time Replies Prediction (MAP):

Models	RSVM	NCF	ConvMF	CR_JTD	Ours
Twitter	0.002	0.033	0.049	0.090	0.160
Reddit	0.049	0.038	0.210	0.075	0.212

0.5